Antibacterial and anti-biofilm effects of microwave-assisted biologically synthesized zinc nanoparticles
Authors
Abstract:
Objective(s): The present study aimed to investigate the antibacterial and anti-biofilm potential of the non-oxidized form of zinc nanoparticles (Zn NPs) prepared by a ‘green approach’ using the Lavandula vera extract with microwave irradiation.Materials and Methods: After synthesis of Zn NPs, the microdilution and disk diffusion methods was applied for antimicrobial evaluation followed by anti-biofilm activity measurement using crystal violet colorimetric assay procedure.Results: The obtained results demonstrated the production of spherical Zn NPs within the size range of 30-80 nanometers. The measured minimum inhibitory concentration of the Zn NPs and ZnSO4 against the biofilm-producing and clinically isolated pathogens of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis was estimated to be more than 2560 µg/ml. In addition, a non-significant increase (P>0.05) was observed in the antibacterial activity against methicillin-resistant S. aureus after the addition of the Zn NPs (500 µg/disk) to the antibiotic discs containing tobramycin, erythromycin, tetracycline, azithromycin, and kanamycin compared to ZnSO4. On the other hand, the Zn NPs significantly decreased the biofilm formation of P. mirabilis compared to P. aeruginosa (P<0.05). Biofilm formation by S. aureus also reduced to 68.3±2.1% in the presence of the Zn NPs (640 µg/ml), which was considered significant compared to P. mirabilis and P. aeruginosa at the same concentration (P<0.05). Conclusion: To sum up, the biofilm inhibitory activity of Zn NPs at higher concentrations than 160 µg/ml against S. aureus and P. mirabilis was more significant compared to the inhibitory effects of ZnSO4. However, further investigations are required in order to determine the antibacterial and anti-biofilm mechanism of Zn NPs.
similar resources
Anti-biofilm Effects of Zinc Oxide Nanoparticles Synthesized by Leaf Extract of Typha Latifolia on Biofilm Gene Expression in Multidrug-Resistant Klebsiella Pneumoniae Strains: A Laboratory Study
Background and Objectives: Biofilms are a community of bacteria on surfaces coated with extracellular polymeric materials, and one strategy to remove biofilms is to use nanoparticles. The aim of this study was to synthesize green zinc oxide (ZnO) nanoparticles and determine its anti-biofilm effects on biofilm gene expression in multidrug-resistant Klebsiella pneumoniae strains. Materials and M...
full textEnhanced structural, optical and antibacterial activities of Zn2SnO4 nanorods synthesized by Microwave assisted method
In this research, Zn2SnO4 nanorods were prepared and structural properties of the nanorods were characterized, developing of wide-range of the optical behavior of Zn2SnO4 nanorods and the antibacterial activity was also investigated using a microwave-assisted method. A zinc stannate (Zn2SnO4) nanorod was synthesized via facile microwave-assisted method using ammonia with cubic spinel structure....
full textStructural and Optical Study of SnO Nanoparticles Synthesized Using Microwave–Assisted Hydrothermal Route
SnO nanoparticles were synthesized using microwave–assisted hydrothermal method. It was noticed that at 300 and 600 watt microwave power, SnO formed and remained in the tetragonal phase. At 900 watt, SnO2 started appearing and a mixture of SnO and SnO2 phases coexisted. The particle size varied from ~2 to ~13 nm at 300 to 900 watt radiation power. The UV-V absorption spectra showed the excitoni...
full textEvaluation of Antimicrobial and Anti-biofilm Effects of Copper Nanoparticles Synthesized by Artemisia Scoparia Extract Against Multidrug-Resistant Klebsiella pneumoniae Strains and Analysis of Biofilm Gene Expression
Background: Klebsiella pneumoniae is one of the most important hospital opportunistic pathogens that have become resistant to many antibiotics due to biofilm formation. The aim of this study was to synthesize copper nanoparticles using Artemisia scoparia extract, to investigate its antimicrobial and anti-biofilm effects against K. pneumoniae strains. Methods: In this experimental study, 100 cli...
full textMicrowave-Assisted Synthesis of kappa-Carrageenan Beads Containing Silver Nanoparticles with Dye Adsorption and Antibacterial Properties
In this work, we used a simple and totally green method for synthesizing silver nanoparticles using kappa-carrageenan as reducing and stabilizing agent. The beads were prepared in aqueous medium by microwave heating, and then followed by cross-linking with K+ cations without using any additional toxic and expensive chemical agents. The preparation method of the carrageenan-based beads is easy, ...
full textAntibacterial Activity and Biofilm Inhibition of Gold Nanoparticles Synthesized with Ethanolic Extract of Rosa damascena and Juglans regia
Background and purpose: This study aimed at investigating the antibacterial effects of nanoparticles synthesized with ethanol extract of Rosa damascena and Juglans regia (walnut leaves) against methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii. Materials and methods: In this experimental study, gold nanoparticles were synthesized...
full textMy Resources
Journal title
volume 6 issue 3
pages 223- 231
publication date 2019-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023